[image: image1.png]

Windows Vista
 Credential Providers

Microsoft Corporation © 2006 This is pre-release documentation and is subject to change in future releases.
Table of Contents
4Requirements

4Introduction

5The Enums

5CREDENTIAL_PROVIDER_USAGE_SCENARIO

6CREDENTIAL_PROVIDER_FIELD_TYPE

8CREDENTIAL_PROVIDER_FIELD_STATE

8CREDENTIAL_PROVIDER_FIELD_INTERACTIVE_STATE

9CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE

9CREDENTIAL_PROVIDER_STATUS_ICON

10The Structs

10CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR

11CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION

12The Interfaces

13ICredentialProvider

13SetUsageScenario

14SetSerialization

14Advise

15UnAdvise

15GetFieldDescriptorCount

15GetFieldDescriptorAt

16GetCredentialCount

16GetCredentialAt

17ICredentialProviderEvents

17CredentialsChanged

17ICredentialProviderCredential

18Advise

18UnAdvise

18SetSelected

18SetDeselected

18GetFieldState

19GetStringValue

19GetBitmapValue

19GetCheckboxValue

19GetSubmitButtonValue

19GetComboBoxValueCount

20GetComboBoxValueAt

20SetStringValue

20SetCheckboxValue

20SetComboBoxSelectedValue

21CommandLinkClicked

21GetSerialization

21ReportResult

22ICredentialProviderCredentialEvents

23SetFieldState

23SetFieldInteractiveState

23SetFieldString

23SetFieldCheckbox

24SetFieldBitmap

24SetFieldComboBoxSelectedItem

24DeleteFieldComboBoxItem

24AppendFieldComboBoxItem

25SetFieldSubmitButton

25OnCreatingWindow

25ICredentialProviderFilter

26Filter

27UpdateRemoteCredential

28IConnectableCredentialProviderCredential

28Connect

28Disconnect

28IQueryContinueWithStatus

28SetStatusMessage

28QueryContinue

29Appendix A – Serialization

29Example of a serialized credential

30Appendix B – Pre-Logon Access Providers

30Overview

30An Example

30Supported Scenarios

31Required interfaces

31IConnectableCredentialProviderCredential

31Connecting to the Network

31Questions

Requirements
Credential Providers are in-process COM objects used to collect credentials in Windows Vista. To develop a Credential Provider you will need Windows Vista and the Windows Vista SDK. You should also be reasonably familiar with programming Windows, be comfortable with Windows Security concepts, and be a reasonably experienced COM programmer.

Credential Providers may be installed on all Windows Vista SKUs.

Introduction
This document describes the Credential Provider Framework. It is intended to be read by developers and IT Professionals who wish to implement custom authentication mechanisms for Windows Vista.

Before Windows Vista, organizations requiring custom authentication mechanisms for Windows logon were forced to replace the Microsoft Graphical Identification and Authentication Dynamic Link Library (MSGINA DLL) with their own GINA. In general, this architecture caused many problems for software vendors and IT professionals. Specifically, GINAs required constant upkeep and would routinely break with the release of each Service pack or new version of Windows. Another drawback of the GINA replacement model is that code written for authentication at Logon did not naturally extend to authentication in Credential UI.

This limitation is removed in Windows Vista with the advent of the Windows Vista Credential Provider Framework.
In previous versions of Windows (such as Windows XP), MSGINA.DLL (or its replacement) was loaded after Winlogon detected a Secure Action Sequence (SAS) event. The user would enter their authentication credentials and then the GINA would pass this information back to Winlogon for authentication.

In Windows Vista, Winlogon always launches Logon UI after it receives a SAS event. Logon UI queries each Credential Provider for the number of credentials it wishes to enumerate. Credential Providers have the option of specifying one of these tiles as the default. After all providers have enumerated their tiles, Logon UI displays them to the user. The user interacts with a tile to supply their credentials. Logon UI submits these credentials for authentication.

Combined with supporting hardware, Credential Providers can extend the Microsoft Windows operating system to enable users to logon through biometric (fingerprint, retinal, or voice recognition), password, PIN and Smart Card certificate, or any custom authentication package and schema a third party developer desires to create. Corporations and IT Professionals may develop and deploy custom authentication mechanisms for all domain users and may explicitly require users to use this custom logon mechanism.

Credential Providers are not enforcement mechanisms. They are used to gather and serialize credentials. The Local Authority and authentication packages enforce security.

Credential Providers may be designed to support Single Sign On (SSO), authenticating users to a secure network access point (leveraging RADIUS and other technologies) as well as machine logon. Credential Providers are also designed to support application-specific credential gathering, and may be used for authentication to network resources, joining machines to a domain, or to provide administrator consent for User Account Control.
Multiple Credential Providers may co-exist on a machine.

Credential Providers are registered on a Windows Vista machine and responsible for:
· Describing the credential information required for authentication
· Handling communication and logic with external authentication authorities
· Packaging credentials for interactive and network logon
The Enums
These enumerations are used within Credential Providers to aid in code readability. They are used to communicate information between a Credential Provider and the process that instantiated it.

CREDENTIAL_PROVIDER_USAGE_SCENARIO
In Windows Vista your Credential Providers may be invoked in five separate scenarios. Credential Providers are not required to support all scenarios. A usage scenario is passed as a parameter in SetUsageScenario. Credential Providers store this parameter for reference throughout their lifecycle.

Providers may support creation on the Windows Logon screen and within Credential UI (this usage scenario includes the UAC prompt). Credential Provider authors may also define specific behavior when a machine is unlocked. If applicable, Credential Providers may also want to support changing private information used to identify the user (e.g. password or PIN). Some Credential Providers are designed to serve as Pre-Logon Access Providers (please refer to Appendix B for more information about PLAPs).

typedef enum _CREDENTIAL_PROVIDER_USAGE_SCENARIO

{

 CPUS_INVALID = 0,

 CPUS_LOGON,

 CPUS_UNLOCK_WORKSTATION,

 CPUS_CHANGE_PASSWORD,

 CPUS_CREDUI,

 CPUS_PLAP,

} CREDENTIAL_PROVIDER_USAGE_SCENARIO;
CPUS_INVALID
No usage scenario has been set for the Credential Provider. The scenario is not passed to ICredentialProvider::SetUsageScenario . If a Credential Provider stores its current usage scenario as a class member, this provides an initialization value before the first call to SetUsageScenario.
CPUS_LOGON
Implementing this usage allows the Credential Provider to enumerate tiles for workstation logon. Credential Providers implementing this usage scenario should be prepared to serialize credentials for authentication to the a local authority.
Depending on the specific implementation details of the provider, it may be useful to maintian some stateful information internally. For example, Credential Providers authors may find it helpful to maintain the currently logged on user in order to provide the enumerate the correct credential tile within the CPUS_UNLOCK_WORKSTATION usage scenario.
CPUS_UNLOCK_WORKSTATION
Implementing this usage allows a user to use tiles enumerated by the Credential Provider to unlock a workstation. Credential Providers implementing this usage scenario should enumerate the currently logged on user as the default tile. There are multiple ways to keep track which user is currently logged on to the system. The Credential Provider may maintain this information internally or leverage existing APIs (such as WTSQuerySessionInformation) to obtain it.
CPUS_CHANGE_PASSWORD
This usage scenario allows the Credential Provider to enumerate tiles in response to a user request to change their password (or other private information such as a PIN). Credential Providers implementing this usage scenario should enumerate the currently logged on user as the default tile. This should not be implemented by Credential Providers that do not require some secret information (such as a password or PIN) that may be changed by the user. As with CPUS_UNLOCK_WORKSTATION, the Credential Provider may remember which user is currently logged on itself or leverage existing APIs (such as WTSQuerySessionInformation) to obtain this information.
CPUS_CREDUI

Implemeintg this usage scenario allows credentials serialized by the Credential Provider to be used for authentication on remote machines. Credential UI does not use the same instance of the provider as the Logon UI, Unlock Workstation, or Change Password. State information can not be maintained in the provider between instances of Credential UI. This usage scenario is also used for over the shoulder prompting in User Account Control.
CPUS_PLAP
Credential Providers responding to this usage scenario will be displayed on the Pre-Logon-Access Provider screen. (please refer to Appendix B for more information about PLAPs)
CREDENTIAL_PROVIDER_FIELD_TYPE
Any Credential Providers that enable a user to authenticate with private information is useless without collecting the information. Credential Providers may offer Checkboxes, Combo boxes, editable text fields, and password (echoing dots) text fields for users to supply information. Credential Providers convey information to users through large text, small text, and images. Credential Providers may contain Hyper Links (although they are called Command Links).

Credential Providers do not actually draw their own UI. They specify elements to be displayed to the user within a usage scenario. The provider returns a set of fields (in various states) and the code instantiating the provider draws the fields as appropriate.

typedef enum _CREDENTIAL_PROVIDER_FIELD_TYPE

{

 CPFT_INVALID = 0,

 CPFT_LARGE_TEXT,

 CPFT_SMALL_TEXT,

 CPFT_COMMAND_LINK,

 CPFT_EDIT_TEXT,

 CPFT_PASSWORD_TEXT,

 CPFT_TILE_IMAGE,

 CPFT_CHECKBOX,

 CPFT_COMBOBOX,

 CPFT_SUBMIT_BUTTON,

} CREDENTIAL_PROVIDER_FIELD_TYPE;
CPFT_LARGE_TEXT
A stand alone text label drawn in the larger of two font sizes.
CPFT_SMALL_TEXT
A stand alone text label drawn in the smaller of two font sizes.
CPFT_COMMAND_LINK
An uneditable string a user may click to perform an action. The Credential Provider will be informed of the user’s click and must do the appropriate action. (refer to CommandLinkClicked for more information)

CPFT_EDIT_TEXT
This field is an edit box. Users may provide information for serialization by typing in this box.

CPFT_PASSWORD_TEXT
This box is similar in every way to CPFT_EDIT_TEXT with one notable exception. Characters typed in this box echo as dots on the user’s screen.

CPFT_TILE_IMAGE
A bitmap that is shown as the user tile image. Not editable. All Credential Providers must contain no more than one CPFT_TILE_IMAGE. If no image is specified, Logon UI and Credential UI will supply a default tile image.

CPFT_CHECKBOX
A checkbox control that allows for checked and unchecked states.
CPFT_COMBOBOX
This control allows a user to select an option from a pre-defined set of discrete choices.
CPFT_SUBMIT_BUTTON
This field appears as a button on the credential tile. Pressing the button allows the user to submit their credentials. There may be one and only one CPFT_SUBMIT_BUTTON for any credential tile. Unlike Logon UI, which draws a special submit button in the tile layout, Credential UI hides this field and renders a single submit button for all credentials.

CREDENTIAL_PROVIDER_FIELD_STATE
Credential Provider fields may vary their behavior based on their state. Developers may choose to hide and display fields on the tile based on state. Recognized states are selected and de-selected. Fields may be displayed or hidden when the tile is selected, displayed or hidden when the tile is deselected, or may be displayed or hidden at all times regardless of tile state.
typedef enum _CREDENTIAL_PROVIDER_FIELD_STATE

{

 CPFS_HIDDEN = 0,

 CPFS_DISPLAY_IN_SELECTED_TILE,

 CPFS_DISPLAY_IN_DESELECTED_TILE,

 CPFS_DISPLAY_IN_BOTH,

} CREDENTIAL_PROVIDER_FIELD_STATE;
CPFS_HIDDEN
Do not show the control at all in any state. An example where this state could be used is a password field should only be shown after a thumb print was read. In this case, the field password field would begin in this state.
CPFS_DISPLAY_IN_SELECTED_TILE
Show the control in the credential when in the selected state.
CPFS_DISPLAY_IN_DESELECTED_TILE
Show the control in the credential when in the deselected state. This is the state in Logon UI/Credential UI that enumerates all of the valid credentials to be used.
CPFS_DISPLAY_IN_BOTH
Show the control both when the credential tile is selected and when it is not selected.
CREDENTIAL_PROVIDER_FIELD_INTERACTIVE_STATE
Credential Provider tiles (Instances of ICredentialProviderCredential) may display their fields in a variety of states. The fields may be displayed as read only, disabled, or focused.
typedef enum _CREDENTIAL_PROVIDER_FIELD_INTERACTIVE_STATE

{

 CPFIS_NONE = 0,

 CPFIS_READONLY,

 CPFIS_DISABLED,

 CPFIS_FOCUSED,

} CREDENTIAL_PROVIDER_FIELD_INTERACTIVE_STATE;
CPFIS_NONE
The field is editable if allowed by the field type. Equivalent to CPFIS_READONLY for uneditable field types.
CPFIS_READONLY
This field interactive state is not used in Windows Vista.

CPFIS_DISABLED
This field interactive state is not used in Windows Vista.

CPFIS_FOCUSED
Credential Providers use this field interactive state to indicate the field should receive initial keyboard focus. This interactive state may not be specified for un-editable field types. If several editable fields specify state CPFIS_FOCUSED, the first of them (by their dwIndex order) will receive focus. This field interactive state is only obeyed during initial enumeration. Logon UI and Credential UI do not update this field interactive state as the user changes focus. Changing this state after the credential tile is rendered will not be noticed by the user.

CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE
This enumeration contains the values necessary for the ICredentialProviderCredential to communicate whether an attempt to serialize credentials completed successfully or not.

For instance, if a credential requires a PIN and answer to a secret question but only received the PIN then returning CPGSR_NO_CREDENTIAL_NOT_FINISHED signals the caller should allow the user to change their response. CPGSR_NO_CREDENTIAL_FINISHED means the caller should not attempt to serialize again and CPGSR_RETURN_CREDENTIAL_FINISHED implies serialization was successful.

typedef enum _CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE

{

 CPGSR_NO_CREDENTIAL_NOT_FINISHED,

 CPGSR_NO_CREDENTIAL_FINISHED,

 CPGSR_RETURN_CREDENTIAL_FINISHED,

} CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE;
CPGSR_NO_CREDENTIAL_NOT_FINISHED
No credential was serialized because more information is needed.
CPGSR_NO_CREDENTIAL_FINISHED
This serialization response means that the Credential Provider has not serialized a credential but it has completed its work. This response has multiple meanings. It can mean that no credential was serialized and the user should not try again. This response can also mean no credential was submitted but the credential’s work is complete. For instance, in the Change Password scenario, this response implies success.
CPGSR_RETURN_CREDENTIAL_FINISHED
A credential was serialized. This response implies a serialization structure was passed back.

CREDENTIAL_PROVIDER_STATUS_ICON
When ReportResult is called on a credential, the credential may specify a status icon to display. For instance, if an incorrect password is entered the error icon can be returned. This enumeration is only used in Logon UI. Note: Credential UI does not call ReportResult.

typedef enum _CREDENTIAL_PROVIDER_STATUS_ICON

{

 CPSI_NONE = 0,

 CPSI_ERROR,

 CPSI_WARNING,

 CPSI_SUCCESS,

} CREDENTIAL_PROVIDER_STATUS_ICON;
CPSI_NONE
Display no icon.
CPSI_ERROR
Display the error icon.
CPSI_WARNING
Display the warning icon.
CPSI_SUCCESS
This icon is not available in Windows Vista.

The Structs
Two structs are defined within CredentialProvider.h. CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR defines the format each field of a Credential Provider credential. CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION defines the serialization structure used within the Credential Provider Framework.

CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR
Each UI element presented to the user on a tile is defined by the Credential Provider as a field. The Credential Provider describes these fields with a field descriptor. Field descriptors uniquely identify the field within the Credential Provider. Fields may not be added or subtracted from after they are defined for a particular usage scenario. Credential Providers must define all fields before enumerating tiles. Fields that will appear and disappear dynamically should be created before enumerating a tile. The Provider should hide and reveal the field using the CPFS_HIDDEN.

typedef struct _CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR

{

 DWORD dwFieldID;

 CREDENTIAL_PROVIDER_FIELD_TYPE cpft;

 LPWSTR pszLabel;

 GUID guidFieldType;

} CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR;
dwFieldID
This member specifies the unique identifier of the field. The identifier must be unique within the array of field descriptors returned by a given Credential Provider through GetFieldDescriptorAt. All fields should have a unique identifier regardless of whether they are displayed or hidden.

cpft
The type of the field from the list of possible fields in CREDENTIAL_PROVIDER_FIELD_TYPE.
pszLabel
This label names the field for accessibility technologies such as narrator. For instance, the standard password credential would have fields labeled “Username”, “Password”, and “Log On To”.
guidFieldType
This member enables 3rd party developers to wrap functionality provided by existing Credential Providers in their own provider. The guidFieldType allows these developers to specify a field by a unique value.

The Password Provider username, password, Smart Card Provider username, and PIN field each have a pre-defined guidFieldType.

CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION
Once the credential information has been gathered on the Credential tile, it must be packaged into a buffer. The final destination of serialized credentials depends on the usage scenario. In the Logon scenario, Logon UI will pass these serialized credentials to Winlogon. Ultimately these credentials are used by the LSA to authenticate the user for interactive logon. In the Credential UI scenario, the serialized buffer is passed back to the calling application. The calling application then uses the serialized buffer to authenticate.

The process of packaging credential information into a buffer is called “ Serialization ”. (For an example of Serialization, please refer to Appendix A)

The CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION structure defines the format all serialized credentials must take regardless of the authentication package used. After serialization, this structure will be passed back to Winlogon in the Logon UI case and back to the calling application in the Credential UI case. If you are using a custom authentication package, pass your credentials back in this structure the same way. Note that Credential Providers implementing CPUS_LOGON do not call LsaLogonUser – this call is handled by the system.

It is important to note that clsidCredentialProvider is used within Logon UI but is ignored by Credential UI. Credential UI throws this member away when it returns cbSerialization and rgbSerialization through the parameters passed in by reference from the caller. Credential UI passes ulAuthenticationPacakage to providers during SetSerialization.

Credential Providers may also choose to enumerate a credential tile if an input credential is received from SetSerialization. Within Credential UI this is useful if a user has supplied an incorrect user name or password. In this case, Credential UI will pass the invalid credentials back to the Credential Provider for re-enumeration so that the Credential Provider may present a partially pre-filled tile to the user in order to make it easier for the user to correct the information they supplied. Input credentials may take many forms. Credential Providers should be robust to receiving complete serialized credentials as well as partial credentials such as incomplete smart card certificates, domain credentials with no user name, etc. In many cases, an incomplete input credential is a hint about what kind of credential the caller wants (for example, this convention is used by callers who only wish to gather Smart Card credentials from the user).

In CPUS_LOGON, SetSerialization is used to pre-fill information from a remote machine, such as in a Terminal Services connection. Logon UI will call SetSerialization zero or one times each enumeration cycle. If a Credential Provider Filter returns a credential serialization from UpdateRemoteCredential, Logon UI will pass that serialization as a parameter.

typedef struct _CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION

{

 ULONG ulAuthenticationPackage;

 GUID clsidCredentialProvider;

 ULONG cbSerialization;

 [size_is(cbSerialization)] byte* rgbSerialization;

} CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION;
ulAuthenticationPackage

The unique identifier of an authentication package. This parameter is required when calling LsaLogonUser. In Credential UI this member is set before a cpcs is passed to the provider through SetSerialization. Credential Providers may examine this member in order to determine if they are able to return credentials for that authentication package. ulAuthenticationPackage is the same type of data that is returned from LsaLookupAuthenticationPackage.

clsidCredentialProvider

Credential Providers should assign their own Class ID to this member during serialization. Credential UI ignores this member.

cbSerialization

The size (in bytes) of the serialized credential contained in the memory pointed to by rgbSerialization.

*rgbSerialization

This is an array of bytes containing serialized credential information. The exact format of this data depends on the authentication package targeted by a Credential Provider.

The Interfaces
In order to create a Credential Provider which works with Windows Vista, ICredentialProvider and ICredentialProviderCredential must be implemented.
ICredentialProviderCredentialEvents provides methods a Credential Provider may use to update its fields based on user activity. It is implemented by the host – either Logon UI or Credential UI.
Credential Provider authors who wish to prevent other Credential Providers on the machine from enumerating user tiles based on information unavailable before runtime should implement ICredentialProviderFilter.

IConnectableCredentialProviderCredential is used to enable tasks requiring pre-logon network connectivity. IQueryContinueWithStatus allows Logon UI to communicate user cancellation requests to a Credential Provider implementing IConnectableCredentialProviderCredential during the network connection process.

ICredentialProviderEvents provides a method allowing Credential Provider to notify Credential UI and Logon UI their Credentials have changed.

Implementations of IQueryContinueWithStatus and ICredentialProviderCredentialEvents are implemented by Microsoft. Credential Provider developers do not need to implement these interfaces.

ICredentialProvider
ICredentialProvider is one of the most important interfaces you will create when you author your Credential Provider. In some sense, this interface is the Credential Provider. Your Credential Provider interacts with Logon UI and Credential UI through this interface. It contains all the methods used in the setup and manipulation of a Credential Provider.
interface ICredentialProvider : IUnknown

{

 HRESULT SetUsageScenario([in] CREDENTIAL_PROVIDER_USAGE_SCENARIO cpus,

 [in] DWORD dwFlags);

 HRESULT SetSerialization([in] const CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcs);

 HRESULT Advise([in] ICredentialProviderEvents* pcpe, [in] UINT_PTR upAdviseContext);

 HRESULT UnAdvise();

 HRESULT GetFieldDescriptorCount([out] DWORD* pdwCount);

 HRESULT GetFieldDescriptorAt([in] DWORD dwIndex,

 [out] CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR** ppcpfd);

 HRESULT GetCredentialCount([out] DWORD* pdwCount,

 [out] DWORD* pdwDefault,

 [out] BOOL* pbAutoLogonWithDefault);

 HRESULT GetCredentialAt([in] DWORD dwIndex,

 [out] ICredentialProviderCredential** ppcpc);

};
SetUsageScenario
This required method allows the Credential Provider to be told how it will be used (for logon, unlock workstation, expired password change, etc). Credential Providers should return failure if the requested usage scenario is not supported. This usage scenario should affect the return values of GetFieldDescriptorCount() and GetFieldDescriptorAt() so that the appropriate fields are displayed depending on the scenario.
Throughout Logon UI’s life, instantiated Credential Providers are maintained. Because of this, Logon UI can maintain state with regards to the Credential Provider. In particular, it remembers which provider and tile provided a credential blob. Logon UI is a very specialized application – it knows exactly where the credential blobs are destined and what types of error codes it can expect to see returned. In other words, it is possible to store state information in the provider for CPUS_LOGON, CPUS_UNLOCK_WORKSTATION, and CPUS_CHANGE_PASSWORD. The same is not true for Credential UI. Credential UI creates a new instance of the Provider every time an application calls CredUIPromptForWindowsCredentials. No state can be maintained in the provider between calls.

Credential Provider authors should also realize it is possible for serializations generated in one usage scenario to be used in a subsequent usage scenario. ICredentialProvider and ICredentialProviderCredential implementations must be robust enough to support this.
Return S_OK if SetUsageScenario completes successfully and the usage scenario is implemented. Return E_NOTIMPL if the call completes successfully but the scenario is unsupported. Credential Providers returning a failure status value are disabled for the specified scenario.

cpus
The value of this CREDENTIAL_PROVIDER_USAGE_SCENARIO indicates the scenario the Credential Provider has been created in.

dwFlags
These flags are set by Credential UI. Credential Providers should examine these flags when determining how many credentials to enumerate. For instance, if CREDUIWIN_ADMINS_ONLY is passed, Credential Providers should only enumerate credential tiles for the administrators on the local machine. For more information about these flags, please refer to the CredUIPromptForWindowsCredentials reference on msdn. Valid flags are:

CREDUIWIN_GENERIC

CREDUIWIN_CHECKBOX

CREDUIWIN_AUTHPACKAGE_ONLY

CREDUIWIN_IN_CRED_ONLY

CREDUIWIN_ENUMERATE_ADMINS

CREDUIWIN_ENUMERATE_CURRENT_USER

CREDUIWIN_PACK_32_WOW

SetSerialization
This required method accepts an input credential. Credential UI calls this method when an input credential has been supplied by an application (this credential could be partial or full). Logon UI calls SetSerialization when a filter returns a credential through UpdateRemoteCredential. It does not use this method when re-enumerating tiles after a call to CredentialsChanged. This method is always called after SetUsageScenario. Credential Providers that implement CPUS_LOGON and return a failure status value from this call will still be enabled.

Credential UI enforces the following rules:

· If dwFlags includes CREDUIWIN_IN_CRED_ONLY, all Credential Providers returning S_OK are enabled.

· If dwFlags includes CREDUIWIN_AUTHPACKAGE_ONLY, all Credential Providers returning a success status value will be enabled.

· If dwFlags includes neither of these flags, then Credential UI uses the same logic as Logon UI and all Credential Providers that implement CPUS_CREDUI will be enabled regardless of the status value they return.
*pcpcs
The Credential Provider must examine CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION in the memory referenced by this parameter and determine if the serialization structure was passed in for display (i.e., a partial credential) or possible serialization (i.e., a full credential that should be auto-submitted). The values of this parameter’s members (e.g., ulAuthenticationPackage and rgbSerialization) combined with the flags passed in SetUsageScenario, (assuming CPUS_CREDUI was passed), will determine how the provider will respond.

Credential Providers must verify the integrity and validity of input serializations. Credential UI and Logon UI do not perform any checks on this structure before passing it to the Credential Provider.

Note that in CPUS_CREDUI the value of clsidCredentialProvider will not be a valid Credential Provider. This field cannot be used to target a specific Credential Provider.

Advise
This is an optional method used to enable a Credential Providers to receive an ICredentialProviderEvents interface pointer from Logon UI and Credential UI during usage. This interface pointer allows asynchronous callback communication with Logon UI and Credential UI. If the ICredentialProviderEvents that is passed in by Advise is stored, it is the Provider’s responsibility to call AddRef on it and Release it during UnAdvise. Credential Providers call CredentialsChanged through the interface pointer to initiate credential re-enumeration.
For instance, a Smart Card Provider would wish to re-enumerate its credentials when a smart card being inserted. Credential Providers that do not support asynchronous re-enumeration should return E_NOTMIMPL.

*pcpe

This is a pointer to an object implementing ICredentialProviderEvents. The Credential Provider should use the CredentialsChanged method of this object to trigger Logon UI to re-initiate the GetCredentialsCount sequence of all Credential Providers installed on the machine. The Credential Provider is responsible for calling AddRef() on this pointer.

upAdviseContext
Each Credential Provider receives a unique cookie when Advise is called. This cookie is used when the Credential Provider makes subsequent calls to ICredentialProviderEvents::CredentialsChanged. This cookie allows Logon UI and Credential UI to correctly identify which Credential Provider has requested re-enumeration.

UnAdvise
Logon UI and Credential UI call UnAdvise to communicate the interface pointer is no longer valid. After receiving this call, the pointer to the ICredentialProviderEvents interface pointer is not longer valid.

In some edge cases it is possible for an UnAdvise call to fail. Because it is less likely for Credential Provider’s destructor to fail, Credential Providers should not use this method to clean up sensitive buffers. Sensitive buffers should be zeroed and freed within the Credential Provider’s destructor.
GetFieldDescriptorCount
Required method which returns the field count of the UI fields required to display this Credential Provider’s credentials. This field count is per usage scenario, but must be valid for the entire scenario. It is important for the Provider to return the count of all fields including those that are only displayed when selected, unselected, and those fields that are not yet displayed at all. This value cannot be changed until a new SetUsageScenario call is made to the Provider or the ICredentialProviderEvents callback is used to force a re-enumeration. A Provider may show or hide fields in response to being selected or deselected, but all of the fields must be present.

*pdwCount
The memory referenced by this parameter contains the number of field descriptors the Credential Provider contains.

GetFieldDescriptorAt
Required method which returns metadata describing one of the individual UI fields for displaying this Credential Provider’s credentials. The index is zero based and is expected to be no greater than the count returned by GetFieldDescriptorCount minus one. It is the Provider ’ s responsibility to make sure that the index is valid based on the number of fields they reported they would have and that the descriptor accurately describes the current state of the field (This will usually be just the defaults for the fields when the tiles are first enumerated).
dwIndex

This is the index of the field the field descriptor will be returned for.

**ppcpfd
Credential Providers must allocate a CREDENTIAL_PROVIDER_FIELD_DESCRIPTOR structure with CoTaskMemAlloc and then set the field descriptor contents equal to appropriate values. This parameter allows a pointer to the field descriptor created by the Credential Provider to be returned to Logon UI and Credential UI.

GetCredentialCount
This is a required method used to communicate the number of credentials that can be enumerated through GetCredentialAt.
*pdwCount

The memory referenced by this parameter contains the number of credentials the provider can return.

*pdwDefault
The memory referenced by this parameter indicates the index of the credential the provider intends to treat as the default credential. A default credential is pre-selected when the Logon UI (or Credential UI) are ready for user interaction. As each Provider specifies a default credential tile, the following rules are applied in order determine if it will receive default focus or be used to autologon:
· If a default credential has already been specified and that credential is not intended to be used for autologon, AND this new default credential is intended to be used for autologon, then this new credential will be treated as the default.

· If this credential is from the last logged on provider, and there isn't already a default with autologon, then this new credential will be treated as the default.

· If no default credential has been specified yet, then this new credential will be treated as the default.

Credential Providers that do not wish to specify a default tile should return CREDENTIAL_PROVIDER_NO_DEFAULT.

*pbAutoLogonWithDefault
The memory referenced by this parameter specifies whether the Credential Provider would like Logon UI or Credential UI to immediately call GetSerialization on the Provider’s default tile.

GetCredentialAt
Required method which returns a specific credential from the Credential Provider. This is a zero based index into the number of credentials reported in GetCredentialCount. If the number of valid credentials changes, the ICredentialProviderEvents given to the Provider in Advise should signal a request for a complete re-enumeration.
dwIndex
This parameter contains the index of the credential Logon UI or Credential UI is requesting.

**ppcpc
This memory referenced by this parameter contains the instance of the credential returned to Logon UI and Credential UI. The Credential Provider allocates the memory for the credential and returns a pointer to it in this parameter.

ICredentialProviderEvents

This interface is implemented by Logon UI and Credential UI. It exposes a single method allowing Credential Providers to notify Credential UI and Logon UI their credentials have changed.

interface ICredentialProviderEvents : IUnknown

{

 HRESULT CredentialsChanged([in] UINT_PTR upAdviseContext);

};
CredentialsChanged

This is an asynchronous callback method Credential Providers use to signal to the host (Logon UI or Credential UI) the Credential Provider has changed its credential count, field count, or the specific indices within either of these sets.
upAdviseContext
The Credential Provider should pass back the interface pointer it received through Advise in this parameter.
ICredentialProviderCredential
This Interface defines the methods needed to implement a credential tile.

interface ICredentialProviderCredential : IUnknown

{

 HRESULT Advise([in] ICredentialProviderCredentialEvents* pcpce);

 HRESULT UnAdvise();

 HRESULT SetSelected([out] BOOL* pbAutoLogon);

 HRESULT SetDeselected();

 HRESULT GetFieldState([in] DWORD dwFieldID,

 [out] CREDENTIAL_PROVIDER_FIELD_STATE* pcpfs,

 [out] CREDENTIAL_PROVIDER_FIELD_INTERACTIVE_STATE* pcpfis);

 HRESULT GetStringValue([in] DWORD dwFieldID, [out, string] LPWSTR* ppsz);

 HRESULT GetBitmapValue([in] DWORD dwFieldID, [out] HBITMAP* phbmp);

 HRESULT GetCheckboxValue([in] DWORD dwFieldID, [out] BOOL* pbChecked, [out, string] LPWSTR* ppszLabel);

 HRESULT GetSubmitButtonValue([in] DWORD dwFieldID, [out] DWORD* pdwAdjacentTo);

 HRESULT GetComboBoxValueCount([in] DWORD dwFieldID, [out] DWORD* pcItems, [out] DWORD* pdwSelectedItem);

 HRESULT GetComboBoxValueAt([in] DWORD dwFieldID, DWORD dwItem, [out, string] LPWSTR* ppszItem);

 HRESULT SetStringValue([in] DWORD dwFieldID, [in, string] LPCWSTR psz);

 HRESULT SetCheckboxValue([in] DWORD dwFieldID, [in] BOOL bChecked);

 HRESULT SetComboBoxSelectedValue([in] DWORD dwFieldID, [in] DWORD dwSelectedItem);

 HRESULT CommandLinkClicked([in] DWORD dwFieldID);

 HRESULT GetSerialization([out] CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE* pcpgsr,

 [out] CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcs,

 [out] LPWSTR* ppszOptionalStatusText,

 [out] CREDENTIAL_PROVIDER_STATUS_ICON* pcpsiOptionalStatusIcon);

 HRESULT ReportResult([in] NTSTATUS ntsStatus,

 [in] NTSTATUS ntsSubstatus,

 [out] LPWSTR* ppszOptionalStatusText,

 [out] CREDENTIAL_PROVIDER_STATUS_ICON* pcpsiOptionalStatusIcon);

};
Advise

Logon UI and Credential UI use this method to pass the Credential a pointer to an instance of ICredentialProviderCredentialEvents enabling synchronous callback communication. Advise and UnAdvise are called in pairs and are UI blocking. Return E_NOTIMPL if you do not need to implement this method.

*pcpce
The instance of ICredentialProviderCredentialEvents this pointer references allows the Credential Provider to request that Logon UI or Credential UI update fields on a tile. The Credential Provider is responsible for calling AddRef() on this pointer.

UnAdvise

UnAdvise and Advise are called in pairs. Credential UI and Logon UI call UnAdvise when the pointer *pcpce supplied in Advise is no longer valid.

SetSelected

This method is called when a credential is selected. Returning any value other than S_OK causes Credential UI and Logon UI to behave as if no selection occurred.
*pbAutoLogon
The contents of pbAutoLogon can be set by the credential to indicate whether or not the selecting of the credential means it should attempt to logon immediately. For instance, a Credential Provider enumerating an account without a password may want to return this as true.
SetDeselected

This method is called when a credential loses selection. Credential Providers should use this method to purge all buffers containing sensitive information (for instance, a password or PIN) in addition to purging them in the destructor of the class that stores them.
GetFieldState

This method allows Logon UI and Credential UI to retrieve information about a particular field of a credential in order to display this information in the user tile.

dwFieldID
This is the ID of the field within the Credential Provider. Fields within a Credential Provider are not required to be ordered in any way.

*pcpfs
This pointer to a CREDENTIAL_PROVIDER_FIELD_STATE communicates when Credential UI and Logon UI should show the field on the tile. For instance, the empty Password Provider tile does not display the user name and password fields when a tile is not selected.

*pcpfis
This pointer to a CREDENTIAL_PROVIDER_FIELD_INTERACTIVE_STATE communicates the state of the field to Credential UI and Logon UI.

GetStringValue

Credential UI and Logon UI use this method to obtain the pszLabel for a field. This is used to obtain values for CPFT_LARGE_TEXT, CPFT_SMALL_TEXT, labels of CPFT_COMMAND_LINK labels, CPFT_EDIT_TEXT, and CPFT_PASSWORD_TEXT.

dwFieldID
This parameter specifies the Credential Provider field a string is needed for.
*ppsz
The memory referenced by this parameter contains the string returned to Logon UI and Credential UI.

GetBitmapValue

Credential UI and Logon UI obtain a bitmap to display in the user tile by calling this method.
dwFieldID
This parameter specifies the Credential Provider field a user tile bitmap is needed for.
*phbmp
The memory referenced by this parameter contains the bitmap returned to Logon UI and Credential UI.

GetCheckboxValue

Credential UI and Logon UI use this method to obtain

dwFieldID
This parameter specifies the Credential Provider field a checkbox value is needed for.
*pbChecked
The boolean referenced by this parameter indicates the state of the checkbox to Logon UI and Credential UI.

*ppszLabel
The memory referenced by this parameter contains returns the label of the checkbox returned to Logon UI and Credential UI.

GetSubmitButtonValue

Logon UI uses this method to obtain information about which field the submit button should be placed after. Credential UI never calls this method.

dwFieldID
This parameter specifies the Credential Provider field a submit button value is needed for.
*pdwAdjacentTo
This parameter contains the field ID the submit button is adjacent to.

GetComboBoxValueCount

Credential UI and Logon UI use this method to obtain the number of items in a combo box and which item should have initial selection.

dwFieldID
This parameter specifies the Credential Provider field a combo box value count is needed for.
*pcItems
The memory referenced by this parameter contains the number of items in the combo box.

*pdwSelectedItem
This parameter contains the value of the combo box item which will be selected.

GetComboBoxValueAt

Credential UI and Logon UI use this method to obtain the value of a string in the combo box at the index specified by the caller.

dwFieldID
This parameter specifies the Credential Provider field corresponding to the combo box an item will be returned from.
dwItem
This is the index of the item desired.

*ppszItem
The Credential Provider credential returns the appropriate string in the memory referenced by this parameter.

SetStringValue

Credential UI and Logon UI use this method to set the value of strings on CPFT_EDIT_TEXT fields as the user types in them.

dwFieldID
This parameter specifies the Credential Provider field where a string value will be set.
Psz
The new value of the field.

SetCheckboxValue

Credential UI and Logon UI use this method to indicate to the credential that a checkbox value has been changed (set to true or false).

dwFieldID
This parameter specifies the Credential Provider field a check box value will be set.
bChecked
This parameter indicates the value to set the checkbox to – true is checked, false is unchecked.

SetComboBoxSelectedValue

Credential UI and Logon UI use this method to indicate to the credential that a Combo Box item has been selected.

dwFieldID
This parameter specifies the Credential Provider field where a Combo Box item is selected.
dwSelectedItem
This value of this parameter indicates the item selected.

CommandLinkClicked

Credential UI and Logon UI use this method to indicate to the credential that a Command Link was clicked.

dwFieldID
This parameter specifies the Credential Provider field of the Command Link that was clicked.

GetSerialization

This method is required. The is expected to take appropriate action based on the usage scenario. In CPUS_LOGON and CPUS_UNLOCK_WORKSTATION, the information credential information should be packed up into a binary stream for transmission to Winlogon and eventual submission to LSA. In CPUS_CREDUI, the information should be serialized for delivery to the calling application.

In CPUS_CHANGE_PASSWORD, no actual credential serialization takes place. Instead, the Credential should take appropriate actions to update the users secret information and return CPGSR_NO_CREDENTIAL_FINISHED in pcpgsr.
*pcpgsr

The Credential uses this parameter to indicate the success or failure of the attempts to Serialize Credentials. Refer to CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE above for more information.

*pcpcs

This is a pointer to the CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION structure (if any) serialized by the Credential.

*ppszOptionalStatusText

This parameter may be used to send additional information back to Logon UI that will be displayed after serialization.
*pcpsiOptionalStatusIcon

This parameter may be used to specify a CREDENTIAL_PROVIDER_STATUS_ICON. This icon will be shown on the Credential after the call to GetSerialization returns.
ReportResult

This method is called by Logon UI to allow the Credential to format the ntstatus code returned after the last logon attempt. Credential UI never calls this method. Credential Provider authors use this method to provide meaningful error and success messages to the user. The status text returned from this call will appear on the selected credential.

ntStatus

Logon UI passes the ntStatus returned by Winlogon from LSA in this parameter.
ntSubstatus

Logon UI passes the ntSubstatus returned by Winlogon from LSA in this parameter.
*ppszOptionalStatusText

This parameter is used to return the error message that will be displayed to the user.

pcpsiOptionalStatusIcon

This parameter may be used to specify a CREDENTIAL_PROVIDER_STATUS_ICON. This icon will be shown on the Credential after the call to ReportResult returns.

ICredentialProviderCredentialEvents
This interface is implemented by Microsoft. Credential Providers do not need to implement this interface. Objects implementing this interface contain methods credentials may call in order to change the state of their UI.

The methods exposed by this interface are only intended to be called by the selected credential passing this as the first parameter. Behavior is undefined if you pass a credential other than the one Advise was called on. Credential Providers should not pass this object to other threads. If a Credential Provider has information on another thread that it wants sent to Logon UI or Credential UI through this interface, it should communicate between its threads such that the thread that received the Advise is the thread that calls into the interface.

FieldIDs do not need to be sequential but they must be unique within a Credential.

 interface ICredentialProviderCredentialEvents : IUnknown

{

 HRESULT SetFieldState([in] ICredentialProviderCredential* pcpc,

 [in] DWORD dwFieldID,

 [in] CREDENTIAL_PROVIDER_FIELD_STATE cpfs);
 HRESULT SetFieldInteractiveState([in] ICredentialProviderCredential* pcpc,

 [in] DWORD dwFieldID,

 [in] CREDENTIAL_PROVIDER_FIELD_INTERACTIVE_STATE cpfis);

 HRESULT SetFieldString([in] ICredentialProviderCredential* pcpc,

 [in] DWORD dwFieldID,

 [in, string, unique] LPCWSTR psz);
 HRESULT SetFieldCheckbox([in] ICredentialProviderCredential* pcpc,

 [in] DWORD dwFieldID,

 [in] BOOL bChecked,

 [in] LPCWSTR pszLabel);
 HRESULT SetFieldBitmap([in] ICredentialProviderCredential* pcpc,

 [in] DWORD dwFieldID,

 [in] HBITMAP hbmp);

 HRESULT SetFieldComboBoxSelectedItem([in] ICredentialProviderCredential* pcpc,

 [in] DWORD dwFieldID,

 [in] DWORD dwSelectedItem);
 HRESULT DeleteFieldComboBoxItem([in] ICredentialProviderCredential* pcpc,

 [in] DWORD dwFieldID,

 [in] DWORD dwItem);
 HRESULT AppendFieldComboBoxItem([in] ICredentialProviderCredential* pcpc,

 [in] DWORD dwFieldID,

 [in, string] LPCWSTR pszItem);

 HRESULT SetFieldSubmitButton([in] ICredentialProviderCredential* pcpc,

 [in] DWORD dwFieldID,

 [in] DWORD dwAdjacentTo);
 HRESULT OnCreatingWindow([out] HWND* phwndOwner);

};

SetFieldState

A field state can be updated with this callback after Advise is called on the credential.
*pcpc

A pointer to the credential containing the field whose field state is being set.

dwFieldID

This is the FieldID of the field whose state is being set.

cpfs
The CREDENTIAL_PROVIDER_FIELD_STATE the field will be set to.

SetFieldInteractiveState

A field interactive state can be updated with this callback after Advise is called on the credential.
*pcpc
A pointer to the credential containing the field whose field interactive state is being set.

dwFieldID
This is the FieldID of the field whose interactive state is being set.

Cpfis
The CREDENTIAL_PROVIDER_FIELD_INTERACTIVE_STATE the field will be set to.

SetFieldString

This callback allows credentials to update strings on their member fields after an Advise is called.
*pcpc
A pointer to the credential containing the field whose string is being set.

dwFieldID
This is the FieldID of the field whose string is being set.

psz
This is the value the credential’s string will be set to.

SetFieldCheckbox

This callback allows credentials to update their checkbox fields after Advise is called.
*pcpc,
A pointer to the credential containing the field whose checkbox value is being set.

dwFieldID
This is the FieldID of the checkbox field being set.

bChecked
This parameter sets the value of the checkbox. True corresponds to checked and false corresponds to unchecked.

pszLabel
This string allows the caller to set the value of the checkbox label.

SetFieldBitmap

This callback allows credentials to update their user tile image field after Advise is called.
*pcpc
A pointer to the credential whose user tile image is being set.

dwFieldID
This is the FieldID of the credential’s user tile image.

hbmp
The user tile image’s value will be set to this parameter.

SetFieldComboBoxSelectedItem

This callback allows credentials to update the selected item of a member combo box after Advise is called.
*pcpc
A pointer to the credential whose member combo box selection is being set

dwFieldID
This is the FieldID of the credential’s combo box whose selection is being set.

dwSelectedItem
This is the index of the item that will be selected within the combo box.

DeleteFieldComboBoxItem

This callback allows credentials to delete an item from their a member combo box after Advise is called.
*pcpc
A pointer to the credential whose member combo box contains an item to be deleted.

dwFieldID
This is the FieldID of the credential’s combo box containing an item to delete.

dwItem
This is the item that will be deleted within the combo box.

AppendFieldComboBoxItem

This callback allows credentials to add an item to a member combo box after Advise is called.
*pcpc
A pointer to the credential containing a combo box where an item will be added.

dwFieldID
This is the FieldID of the credential’s combo box where an item will be added.

pszItem
The value of this string will be added to the combo box.

SetFieldSubmitButton

This callback allows credentials to set the field their submit button appears adjacent to after Advise is called.
*pcpc
A pointer to the credential whose submit button location is being set.

dwFieldID
This is the FieldID of the credential’s submit button field.

dwAdjacentTo
This is the FieldID of the field the submit will appear next to after this method completes.

OnCreatingWindow

This callback allows credentials to retrieve their parent’s hwnd after Advise is called. This HWND is useful for parenting dialogs such as a messagebox. It is mandatory to parent your dialog to the HWND provided by this call. Credential UI and Logon UI cannot cancel the dialog in the event of a timeout if the dialog is not parented properly.

Dialogs in Logon UI that receive no input for two minutes will be cancelled automatically. Dialogs presented during calls to IConnectableCredentialProviderCredential::Connect on the PLAP screen will never be cancelled due to inactivity.

Credential Providers should follow Windows Vista UX guidelines and use the controls provided by within the Credential Provider framework to show all UI. If a specific scenario requires additional UI, please review Windows Vista UX guidelines when authoring your dialog.
*phwndOwner

This parameter is used to return the HWND of the appropriate parent window.

ICredentialProviderFilter
In some instances, a Credential Provider may need to prohibit other Credential Providers installed on a machine from enumerating credential tiles.

Domain administrators authoring a filter for deployment to desktops they control may proceed more or less in with a free hand as they author their Credential Provider Filter . Credential Provider authors creating a filter for deployment to desktops they do not control will need to consider how they author their filter more carefully.

For instance, consider the case where two separate credential providers each wrap and filter the in-box password provider. Imagine at least one of them performs an operation affecting the entire machine before logon. Consider what happens when a user installs both these hypothetical credential providers on the same machine. During logon only one of them will be used. In this scenario the user can reach the desktop without performing an important operation specified by one of the credential providers.

As a general guideline, Credential Providers should

(1) Only filter out other Credential Providers after explicitly asking and obtaining permission from the administrator in charge of setup

(2) Not filter out the built-in providers (for instance, the password provider) unless leaving these providers unfiltered will cause user confusion. Consider the consequences of not filtering the in-box provider – if it does not severely impact user experience (and wouldn’t cause bad problems if a user logged on using this in-box provider), you probably do not need to filter it out.
Provider filtering is an egalitarian system. Logon UI allows each Provider to filter out other Providers
. Any filter may explicitly block out any provider on the system. This is accomplished by examining an array containing the CLSIDs for all registered providers on the system and setting corresponding entries of a parallel Boolean array to false. Each registered filter has a chance to eliminate providers from the array until the it is empty. You should think of filters like bitmasks on a string of 1’s.
In order to create a Credential Provider filter you must implement ICredentialProviderFilter on a COM object and register it as a subkey at

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credential Provider Filters

The name of the subkey corresponds to the Credential Provider’s CLSID.

Filters accept a CPUS to allow a Credential Provider to enumerate in Logon UI but not Credential UI (or vice versa). Logon UI and Credential UI invoke filters at run time. If you are not guaranteed to be the only 3rd party Credential Provider installed on the box then you may introduce possible instabilities if you filter any built-in providers. Some Credential Provider authors might be tempted to do this in order to force users to use the installed 3rd party Credential Provider for all logons (for instance, to run a script). It is bad practice to depend on users logging on using a specific Credential Provider. Third Party Credential Provider authors generally should not assume there will not be other Credential Provider installed on the user’s system.

After all filters have had a chance to prune the array, Logon UI CoCreates all of the remaining Credential Providers.

As a general rule, filters should not filter a CLSID it does not explicitly recognize.

interface ICredentialProviderFilter : IUnknown

{

 HRESULT Filter([in] CREDENTIAL_PROVIDER_USAGE_SCENARIO cpus,

 [in] DWORD dwFlags,

 [in, size_is(cProviders)] GUID* rgclsidProviders,

 [in, out, size_is(cProviders)] BOOL* rgbAllow,

 [in] DWORD cProviders);
 HRESULT UpdateRemoteCredential([in] const CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcsIn,

 [out] CREDENTIAL_PROVIDER_CREDENTIAL_SERIALIZATION* pcpcsOut);

};

Filter

This method does the work of filtering. Logon UI and Credential UI call Filter before calls to GetCredentialCount.

cpus
The value of this CREDENTIAL_PROVIDER_USAGE_SCENARIO indicates the particular scenario the Credential Provider has been created in.

dwFlags

These flags communicate additional scenario information to the Credential Provider and are not used by Logon UI. Valid flags that may be passed in are
CREDUIWIN_GENERIC

CREDWUWIN_AUTHPACKAGE_ONLY

CREDUIWIN_IN_CRED_ONLY

CREDUIWIN_ENUMERATE_ADMINS

CREDUIWIN_ENUMERATE_CURRENT_USER

CREDUIWIN_PACK_32_WOW

CREDUIWIN_GENERIC causes only the in box generic provider to enumerate.
rgclsidProviders

Initially, this array contains the COM CLSID of every Credential Provider installed on the system. As the array is passed to each filter the only guarantee is that its elements will be some sub set of the initial array’s.

rgbAllow

This is a pointer to the parallel Boolean counter part of rgclsidProviders. Filters use this array to communicate the specific members of rgclsidProviders it wants to prevent from enumerating tiles. Initially this array contains only true values. As each filter examines the array it sets each index to a value of true or false. If the entire array is set to false the Password Provider is displayed so that there will be at least one tile
.

cProviders

This contains the count of rgclsidProviders and rgbAllow.

UpdateRemoteCredential

This interface is only useful to individuals working in certain uncommon remoting scenarios. Most filter implementers should return E_NOTIMPL from this method.

This method is only called within the CPUS_LOGON usage scenario. Logon UI only calls this method within a remote session. This method is called before Logon UI calls Filter.
If S_OK is returned from this method, then the contents of *pcpcsOut will be the credential used. All Credential Provider implementing this method must return S_FALSE (or an error status) unless the intention is to return a credential. Filters that do not obey this rule will break other filters at run time.
pcpcsIn
This member allows the caller to specify a credential to be updated.
pcpcsOut
This member allows the filter to send a credential serialization back to the caller.

IConnectableCredentialProviderCredential
Any Credential Provider designed to connect to the network must implement this interface. All long running tasks such as connecting to a network should be handled within the interface’s Connect method.
interface IConnectableCredentialProviderCredential : ICredentialProviderCredential

{

 HRESULT Connect([in] IQueryContinueWithStatus* pqcws);

 HRESULT Disconnect();

};
Connect

Connect is called after the user clicks the Submit button within the PLAP logon screen. Connect is called before GetSerialization. When Logon UI calls Connect, it passes the method a pointer to an IQueryContinueWithStatus.

*pqcws
This is a pointer to instance of IQueryContinueWithStatus passed by Logon UI.
Disconnect

After a successful call to Connect, Logon UI displays a Disconnect button to the user. If the user clicks Disconnect, Logon UI calls Disconnect on every Credential Provider that implements IConnectableCredentialProviderCredential.

IQueryContinueWithStatus
Credential Providers use IQueryContinueWithStatus for two purposes. They may call QueryContinue to during their attempts to connect to the network in order to determine if they should continue these attempts. They may also use SetStatusMessage to display messages to user while attempting to establish a network connection.
interface IQueryContinueWithStatus : IQueryContinue

{

 HRESULT SetStatusMessage([in, string] LPCWSTR psz);

};

SetStatusMessage

This method allows the credential to pass status messages back to Logon UI. These messages are displayed to the user by Logon UI. During lengthy attempts to Connect this is especially useful.

Psz
This value of the memory referenced by this member will be displayed to the user by Logon UI.

QueryContinue

A simple example of a useful event this function communicates to the Credential Provider is a user clicking Cancel before a connection is established. A well behaved Credential Provider will call this function periodically during its attempt to connect to the network.

Appendix A – Serialization

Example of a serialized credential

This is an example of a serialized credential from the Password Provider. The credentials entered were SAMPLEDOMAIN\SAMPLEUSERNAME and the password entered was SAMPLEPASSWORD.

Notice the structure of the information and that the password is encrypted. Your Credential Provider should encrypt all secret information (such as passwords) during serialization. You may protect your credentials using CredProtect

00000000 02 00 00 00 18 00 18 00 24 00 00 00 1C 00 1C 00$.......

00000010 3C 00 00 00 9C 00 9C 00 58 00 00 00 00 00 00 00 <.......X.......

00000020 00 00 00 00 53 00 41 00 4D 00 50 00 4C 00 45 00S.A.M.P.L.E.

00000030 44 00 4F 00 4D 00 41 00 49 00 4E 00 53 00 41 00 D.O.M.A.I.N.S.A.

00000040 4D 00 50 00 4C 00 45 00 55 00 53 00 45 00 52 00 M.P.L.E.U.S.E.R.

00000050 4E 00 41 00 4D 00 45 00 40 00 40 00 44 00 07 00 N.A.M.E.@.@.D...

00000060 08 00 0C 00 0A 00 0D 00 77 00 41 00 41 00 41 00w.A.A.A.

00000070 41 00 41 00 64 00 53 00 6A 00 57 00 41 00 41 00 A.A.d.S.j.W.A.A.

00000080 41 00 41 00 41 00 41 00 67 00 36 00 6F 00 66 00 A.A.A.A.g.6.o.f.

00000090 39 00 63 00 58 00 42 00 6E 00 67 00 70 00 4B 00 9.c.X.B.n.g.p.K.

000000A0 38 00 53 00 61 00 61 00 77 00 4E 00 6A 00 72 00 8.S.a.a.w.N.j.r.

000000B0 48 00 77 00 45 00 56 00 76 00 6C 00 44 00 59 00 H.w.E.V.v.l.D.Y.

000000C0 53 00 4C 00 47 00 69 00 48 00 68 00 71 00 77 00 S.L.G.i.H.h.q.w.

000000D0 6C 00 47 00 55 00 46 00 64 00 4F 00 70 00 55 00 l.G.U.F.d.O.p.U.

000000E0 57 00 47 00 69 00 69 00 78 00 4B 00 71 00 6F 00 W.G.i.i.x.K.q.o.

000000F0 6C 00 57 00 l.W
For more information on the structure of serialized credentials, please refer to

http://msdn.microsoft.com/msdnmag/issues/05/06/SecurityBriefs/ .
Appendix B – Pre-Logon Access Providers

Overview

A Pre-Logon Access Provider (PLAP) is a special type of Credential Provider (CP) that allows users to make a network connection before logging into their machine.

An Example

Windows Vista ships with a single PLAP installed by default. If you’re reading this document and are not familiar with PLAPs, you may find it helpful to follow this example in order to gain a basic understanding of where these special CPs fit within the Windows Vista landscape.

Note: You will need an access to a VPN to complete this example.
· Log on to your Windows Vista machine using an account with Administrator privileges

· Navigate to the Set up a connection or network dialog

· You can reach this location by opening the Control Panel and searching for “VPN” in the search box located in the upper right corner of the window

· Click Set up a virtual private network (VPN) connection
· Fill in all necessary information for your VPN

· Check Don't connect now, just set it up
· After the test connection is successful complete setup by pressing the close button

· Log off

· In the lower right corner of the Logon screen you should now see the new PLAP button to the left of the power button

· Click the PLAP button

· Select the VPN PLAP tile you just created

· Enter your VPN credentials

· Click Submit button

· After connection to the VPN is complete

· Return to the logon screen

· Type your Windows Credentials

· Click Submit button

· When your desktop is available, hover over the network connection icon in the system tray

· Notice you are now connected to the VPN
Supported Scenarios

PLAPs are intended to be used in the following scenarios

· Network authentication and machine logon are handled by separate CPs. Slight variants of this scenario include

· A user has the option of connecting to a network (such as connecting to a VPN in the example above) before logging in to the machine but is not required to make this connection.

· Network authentication is required in order to retrieve information used during interactive authentication on the local machine.

· Multiple network authentications are followed by one of the other scenarios. For example, a user authenticates to an ISP, then authenticates to a VPN, and then uses their user account credentials to log in locally.
· Cached credentials are disabled and a RAS/VPN connection is required before logon to authenticate the user
· A domain user does not have a local account set up on a domain joined machine and must establish a RAS/VPN connection before completing interactive logon
· Network authentication and machine logon are handled by the same Credential Provider and the user is required to connect to the network before logging on to the machine.
Scenarios where users will authenticate to a network and logon to the machine using separate Credential Providers require a Credential Provider that implements CPUS_PLAP. The Credential Provider that handles network authentication will be registered as a PLAP rather than a normal Credential Provider. Your provider will not enumerate tiles on Logon UI. Users will see them only after clicking the PLAP button.

When network authentication and local interactive authentication are handled by the same Credential Provider, your Credential Provider may be implemented and registered as normal. In this case developers should implement IConnectableCredentialProviderCredential. Your Single Sign (SSO) on provider will handle network authentication in Connect and then provide the credentials to authenticate to the local machine during GetSerialization.
Single Sign On Providers (SSOs) may be developed as PLAPs or standard Credential Providers. The decision depends on the particular scenario the solution addresses. If your scenario requires allocating an indeterminate amount of time for the SSO to connect, you will want to implement your solution as a PLAP. Logon UI expects calls to Connect in CPUS_LOGON usage scenario to return within a reasonable amount of time. Logon UI does not restrict the amount of time that calls to Connect in the CPUS_PLAP usage scenario may take to complete.
SSOs implemented as PLAPs will only be accessible to users after they press the network logon button to reveal the PLAPs installed on the machine.
Required interfaces

PLAPs must implement ICredentialProvider and ICredentialProviderCredential (or IConnectableCredentialProviderCredential). The provider must register itself in the registry like any other Credential Provider. PLAPS must meet two additional requirements

1) The PLAP must not return an error when CPUS_PLAP is passed to its implementation of ICredentialProvider::SetUsageScenario
2) PLAPs must register under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\PLAP Providers
IConnectableCredentialProviderCredential

Any Credential Provider designed to connect to the network must implement this interface. All long running tasks such as connecting to a network should be handled within the interface’s Connect method. All PLAPs must implement this interface.

Connecting to the Network

By definition, implementing IConnectableCredentialProviderCredential requires two methods to support network operations - - Connect and Disconnect. Connect is called after the user clicks the Submit button within the PLAP logon screen. When Logon calls Connect, it passes the method a specific implementation of IQueryContinueWithStatus.

IQueryContinueWithStatus is used to communicate a message to the user while connecting. Logon UI receives messages through our implementation of this interface.

PLAP authors do not need to implement IQueryContinueWithStatus since this mechanism is specific to Logon UI and is passed into the PLAP through Connect.

Questions

Please contact credprov@microsoft.com with any questions.
� Filtering works differently in safe mode. By default, only the in-box password and Smart Card Providers are available when logging in through safe mode. Administrators may set a registry key to override this behavior and obey user mode filters.

� Administrators may set a policy to override the default behavior. In this case, setting each member of rgbAllow to false prevents any provider from enumerating a tile.

